
HammerFilter: Robust Protection and Low
Hardware Overhead for RowHammer

Kwangrae Kim
Department of ECE
Hanyang University
Seoul, South Korea

kksilver91@hanyang.ac.kr

Jeonghyun Woo
Department of ECE

University of Illinois at Urbana-Champaign
Illinois, United States
jwoo15@illinois.edu

Junsu Kim
Department of ECE
Hanyang University
Seoul, South Korea

j0807s@hanyang.ac.kr

Ki-Seok Chung*
Department of ECE
Hanyang University
Seoul, South Korea

kchung@hanyang.ac.kr

Abstract—The continuous scaling-down of the dynamic ran-
dom access memory (DRAM) manufacturing process has made
it possible to improve DRAM density. However, it makes small
DRAM cells susceptible to electromagnetic interference between
nearby cells. Unless DRAM cells are adequately isolated from
each other, the frequent switching access of some cells may lead
to unintended bit flips in adjacent cells. This phenomenon is
commonly referred to as RowHammer. It is often considered a
security issue because unusually frequent accesses to a small set of
rows generated by malicious attacks can cause bit flips. Such bit
flips may also be caused by general applications. Although several
solutions have been proposed, most approaches either incur
excessive area overhead or exhibit limited prevention capabilities
against maliciously crafted attack patterns. Therefore, the goals
of this study are (1) to mitigate RowHammer, even when the
number of aggressor rows increases and attack patterns become
complicated, and (2) to implement the method with a low area
overhead.

We propose a robust hardware-based protection method for
RowHammer attacks with a low hardware cost called Ham-
merFilter, which employs a modified version of the counting
bloom filter. It tracks all attacking rows efficiently by leveraging
the fact that the counting bloom filter is a space-efficient data
structure, and we add an operation, HALF-DELETE, to mitigate
the energy overhead. According to our experimental results,
the proposed method can completely prevent bit flips when
facing artificially crafted attack patterns (five patterns in our
experiments), whereas state-of-the-art probabilistic solutions can
only mitigate less than 56% of bit flips on average. Furthermore,
the proposed method has a much lower area cost compared to
existing counter-based solutions (40.6× better than TWiCe and
2.3× better than Graphene).

Index Terms—RowHammer, Probabilistic Method, Hardware
Security, Reliability, DRAM

I. INTRODUCTION

The dynamic random access memory (DRAM) process
technology has scaled down to approximately 10 nm. With the
increased DRAM density, the cost of memory has decreased,
and the memory performance has improved. However, high-
density cells are likely to suffer from electromagnetic inter-
ference between neighboring cells. There are two significant
concerns in high-density DRAMs. First, a small cell can
hold a limited amount of charge with a small noise margin.
Second, it is becoming more challenging to protect cells
from electromagnetic coupling effects among adjacent cells.
As a result, memory cells suffer from various reliability

problems. Specifically, frequent switching activations (ACTs)
of some cells may lead to unintended bit flips in adjacent cells.
This phenomenon is commonly referred to as RowHammer.
RowHammer is often regarded as a security issue as well as a
reliability problem because frequent activations to a small set
of rows leading to bit flips may be generated by either general
applications or malicious attacks.

Frequently activated rows are called aggressor rows,
and rows that are in danger of bit flips due to attacks are
called victim rows. Several studies [1], [2] have reported
that RowHammer destroys DRAM data in modern computer
systems. Since the DRAM manufacturing technology will
continuously scale down, future DRAM chips will become
more susceptible to bit flips caused by RowHammer attacks.
In fact, it turns out that the DDR4 DRAM is more vulnerable
to RowHammer attacks than previous models [3]. DRAM
cells are periodically refreshed to maintain their charges [4].
According to the JEDEC DDR4 standard, this period is known
to be 64 ms. This time interval is sufficiently long enough to
suffer from bit flips caused by RowHammer attacks. To protect
victim rows from RowHammer attacks, additional refreshes of
victim rows should be carried out before the number of ACTs
in adjacent aggressor rows reaches a certain value called the
RowHammer threshold (RH threshold) [5].

There are two types of hardware-based schemes that utilize
additional refreshes to mitigate RowHammer: probabilistic
schemes and counter-based ones. Probabilistic schemes protect
victim rows from RowHammer attacks by carrying out addi-
tional refreshes with a certain probability. The main advantage
of probabilistic methods is that they can be implemented using
simple hardware circuits. However, they cannot successfully
protect victim rows from some of the maliciously crafted
RowHammer attacks. Most existing probabilistic schemes [5]–
[7] cannot mitigate the number of bit flips caused by RowHam-
mer when attack patterns are complicated. In contrast, counter-
based methods keep track of ACTs of every aggressor row
using counters. If the ACT counter reaches the RH threshold
value, a refresh operation is conducted to avoid unintended bit
flips. Therefore, counter-based schemes can guarantee the pro-
tection of cell values from RowHammer attacks. However, this
approach incurs significant hardware overhead to keep track of
the ACT counts of every activated row to identify potentially

dangerous aggressor rows. In reality, most prior works of this
type suffer from excessive implementation overhead [8]–[10].
According to a recent report [3], the RH threshold of modern
DRAM chips has decreased significantly as concerned. In
particular, the RH threshold of DDR3 is known to be 139K,
whereas the threshold is 10K in DDR4. This implies that the
RowHammer problem is getting exacerbated as DRAM scales
down further. Thus, mitigating the RowHammer problem is
crucial yet very challenging.

In this paper, we propose a novel probabilistic scheme called
HammerFilter that efficiently protects against RowHammer
attacks with a low hardware cost. HammerFilter attempts to
achieve two goals: (1) bit flips caused by RowHammer should
be avoided, even when the number of aggressor rows increases
and the attack patterns get complicated, and (2) additional
refreshes for protecting victim rows from RowHammer should
be carried out sparingly because conducting refreshes incurs
power and performance overhead.

For every access, HammerFilter tracks the degree of threat
of RowHammer based on the access frequency of the ac-
cessed row. To estimate an access frequency, HammerFilter
utilizes a space-efficient probabilistic data structure called the
counting bloom filter (CBF). Specifically, INSERT and
COUNT operations, which are the basic operations of CBF,
are used to track each accessed row and estimate its access
frequency. According to the estimated frequency, Hammer-
Filter sends additional refreshes to neighboring rows with a
calculated probability according to the access frequency of
the accessed rows. If HammerFilter sends additional refreshes,
it reduces the access frequency of refreshed rows with a
newly added HALF-DELETE operation because these rows have
no risk of incurring RowHammer for a while. Therefore,
unnecessary additional refreshes can be avoided.

We evaluate our proposed method using diverse attack
patterns to verify its effectiveness thoroughly. The evalua-
tion results demonstrate that HammerFilter provides a much
stronger RowHammer protection capability than most existing
probabilistic schemes with a much smaller hardware overhead
than counter-based schemes.

II. BACKGROUND
A. DRAM Refresh

The charge stored in a DRAM cell is not persistent because
it slowly leaks off over time. The minimum time for which
a DRAM cell can maintain its charge is called the retention
time. To guarantee the value integrity of cells, DRAM must
perform refresh operations to retain the charges of DRAM
cells within the retention time. In general, refresh commands
are issued periodically by a memory controller. The JEDEC
DDR4 standard [4] mentions that DRAM cells should be
refreshed every 64 ms. Most modern DRAM systems adopt
a refresh scheme called auto-refresh. In auto-refresh, the
memory controller periodically issues 8192 refresh commands
with 7.8 µs refresh interval (tREFI) during the retention time
(64 ms). When DRAM receives a refresh command from
the memory controller, it automatically refreshes a bunch

of rows using an internal refresh controller, requiring a few
nanoseconds (e.g., 350 ns) of refresh command time (tRFC)
to refresh all of the rows [4]. As mentioned previously,
most existing protection schemes for RowHammer employ
additional refreshes to ensure the value integrity in DRAM
cells. Because excessively frequent refreshes incur significant
power consumption and performance degradation, it is crucial
to perform additional refreshes sparingly only for potentially
dangerous rows.

B. Counting Bloom Filter (CBF)

CBF consists of an m-bit array of fixed length with k distinct
hash functions that map each data to certain positions in the
array [11]. CBF has two operations: INSERT, which inserts
data into the filter, where the data can be superimposed, and
COUNT, which checks whether a specific data is stored and
how many times it has been inserted. When an element is
inserted into CBF by an INSERT operation, the element is
hashed to k bits by hash functions. Then, each bit is assigned
one of the indices of the array and added. The COUNT operation
derives the count of the corresponding element by finding the
minimum value of the hashed positions.

III. MOTIVATION

A. Existing Hardware-based Prevention Methods

There are several previous hardware-based protection
schemes for RowHammer attacks. These methods can be
classified as one of the following two types: probabilistic
scheme and counter-based method.
Counter-based Methods Since CBT [9] keeps track of the
activation counts of all potentially dangerous aggressor rows,
it can guarantee the protection of all victim rows. However,
CBT causes a large number of unnecessary refreshes because
refreshes are conducted in groups of rows that may include
rows that are not involved in any attacks. TWiCe [8] uses
a table to record the activation counts of each row in order
to monitor the existence of aggressor rows. Although TWiCe
can guarantee protection, the area overhead for implementing
its table is excessively large. Graphene [10] detects a set of
frequently accessed rows using the Misra-Gries algorithm [12],
which is one of the solutions that are used to find the most
frequent elements. However, it also suffers from significant
hardware overhead.
Probabilistic Methods Probabilistic methods protect victim
rows from RowHammer attacks by carrying out additional
refreshes with a certain probability. A probabilistic method
called PARA [5] refreshes a neighboring row with a pre-
determined probability for every row access. It can be im-
plemented using simple hardware circuits, but it does not
provide acceptable protection or incurs a significant number
of additional refreshes. Another probabilistic method called,
PRoHIT [7], employs tables that record access histories to
determine candidate victim rows. Specifically, the two ta-
bles (Hot table and Cold table) are used to manage the
priorities of candidate rows to be refreshed. However, this
method often fails to mitigate RowHammer as the number of

942.8

64
53.8

23.2

1 1.05 1.1 1.15

A
re

a
C

o
st

 p
e

r
R

an
k

(K
B

)

Relative # of Additional Refreshes

TWiCe CBT Graphene Proposed

(a)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

R
H

 R
e

d
u

ct
io

n
 R

at
io

Aggressor Rows #

PARA MRLoC PRoHIT HammerFilter (Ours)

(b)

Fig. 1: Comparison of the proposed method to prior models (4K as the RH threshold) (a) area and performance overhead of
counter-based models (b) RowHammer reduction of existing probabilistic methods for a specific malicious pattern (pattern 5)

TABLE I: Comparison of the proposed method to existing methods

Approach Models RH Reduction Additional Refresh # Area Cost

Counter-based
Methods

CBT high high high
TWiCe high low high

Graphene high low high

Probabilistic
Methods

PARA low low low
PRoHIT low high low
MRLoc low low low

Proposed high low low

aggressor rows increases. MRLoc [6] utilizes a circular queue
as a history table to increase the probability of refreshing
potential victim rows. However, it does not provide satisfactory
protection capability for several types of RowHammer attacks.

B. Limitations of Previous Methods and Why HammerFilter

Although counter-based methods have strong protection
capabilities for RowHammer attacks, they either require an
excessive amount of hardware overhead or perform a large
number of additional refreshes, or even both. As shown in
Fig. 1a, TWiCe requires a huge table size (i.e., 942.8 KB) to
guarantee protection. Furthermore, when the RH threshold is
less than 32K, TWiCe has to perform floating operations [3],
incurring significant latency when additional refreshes are
conducted to victim rows. CBT causes numerous additional
refreshes to prevent RowHammer and requires 64 KB of
storage, which is a significant hardware overhead. Graphene,
which is one of the state-of-the-art counter-based solutions, has
a lower hardware cost and fewer additional refreshes compared
to other previous methods, but its hardware implementation
size (i.e., 53.8 KB) is still approximately two times greater
than the size of recent hardware implementations in the
memory controller [13], [14]. These findings strongly imply
that existing counter-based schemes are practically unusable
to mitigate the RowHammer problem in real systems.

Fig. 1b presents the RowHammer (RH) reduction ratios of
three existing probabilistic schemes: PARA (with the proba-
bility of conducting a refresh on adjacent rows set to 0.001),
PRoHIT, and MRLoc. Since PRoHit and MRLoc do not pro-
vide detailed explanations of how to adapt their parameters for
different RH values, we set their parameters based on the RH

Memory Controller

Refresh
Logic

REFRESH

ACTIVATION Row Address

Hash UnitInsert
Logic

Hash Unit

HammerFilter

Delete
Logic

Count
Logic CounterTable

Fig. 2: Overall architecture of HammerFilter

threshold 2K according to [6], [7]. The RH reduction ratio of a
certain protection scheme is computed by dividing the number
of RowHammer errors in a DDR4 device after the protection
scheme is applied by the number when no protection method
is applied. PARA shows poor overall RH reduction ratios for
various numbers of aggressor rows. However, PARA seems to
generally provide increased protection against RowHammer as
the number of the aggressor rows increases. This is because
the number of accesses to each row decreases as the number of
aggressor rows increases. In other words, less frequent access
to each row increases the chance of a row being regularly
refreshed before the access count reaches the RH threshold,
even if PARA has a low additional refresh rate. The RH reduc-
tion ratio of PRoHIT decreases significantly when the number
of aggressor rows exceeds ten because its table structure

and management scheme cannot handle many aggressor rows.
The RH reduction ratio of MRLoc is unsatisfactory, mainly
because its queue management algorithm cannot efficiently
keep track of multiple aggressor rows. To sum up, most
existing probabilistic methods are capable of mitigating the
RowHammer issue only when the number of aggressor rows
is small, and the attack patterns are relatively straightforward.
However, modern attack patterns are getting more maliciously
crafted [15]. Therefore, a more robust solution is required to
overcome these challenges.

Table I summarizes the overall pros and cons of all the
RowHammer protection methods compared in this study.
Counter-based methods suffer from either a tremendous
hardware cost or many additional refreshes, or even both.
Probabilistic solutions are vulnerable to some complicated
RowHammer attacks. In contrast, the proposed method shows
strong RowHammer reduction capability with a low hardware
implementation cost. A detailed description of the proposed
method is provided in the following section.

IV. PROPOSED METHOD: HAMMERFILTER

A. Overview of HammerFilter

HammerFilter is a novel probabilistic scheme that utilizes
an optimized version of CBF [11], and it is implemented
in the memory controller. It is totally implemented with
hardware similar to previous hardware-based solutions [5]–
[10]. Because the HammerFilter module is not on the critical
path of write and read operations in the memory controller, it
does not affect the delay incurred by write and read operations.
HamerFilter handles RowHammer concerns by performing
additional refreshes with a calculated probability. In order
to develop an appropriate RowHammer mitigation scheme,
we add a new HALF-DELETE operation to the existing CBF
operations to reduce the access frequency of refreshed rows
because these rows have no risk to incur RowHammer for a
while. Minimizing hash-induced collisions when deleting the
refreshed rows from CBF is an additional goal. To keep track
of potential aggressor rows efficiently, the Insert Logic up-
dates the counts of accessed rows with a predetermined prob-
ability pi. Delete Logic reduces the corresponding counter

table’s value when an additional refresh is performed to reduce
the number of unnecessary additional refreshes that incur
energy and performance overheads. Finally, Count Logic

tells the dedicated logic named Refresh Logic how big the
RowHammer risk of the corresponding potential aggressor
will be. The Refresh Logic will issue additional refresh
commands to victim rows with the calculated probability pr.
The meaning and purpose of the probability pr are explained
in the following subsection. The Counter Table illustrated
in Fig. 2 consists of an m-bit array of fixed length and
Hash Unit hashes a given element into k positions in Count

Table similar to the original CBF, except that updates are
conditionally carried out with some probability pi.

B. Operations of HammerFilter
HammerFilter’s operations are composed of INSERT,

COUNT, and HALF-DELETE as described below to ensure that
HammerFilter efficiently tracks RowHammer. Fig. 3 and Fig. 4
illustrate examples of how each operation is performed. In
particular, Fig. 4 demonstrates the validity of HALF-DELETE.
INSERT When the memory controller sends an ACT com-
mand, HammerFilter conditionally performs an INSERT oper-
ation with a predetermined probability pi. For each row access,
INSERT increases the values of the positions mapped by the
hash unit, as shown in Fig. 3a.
COUNT COUNT determines the RowHammer risk severity of
a frequently accessed row. Fig. 3b presents an example of the
COUNT operation. As in the original CBF, the COUNT operation
returns the minimum value among the hashed positions for a
given accessed row address. For example, the return value of
the COUNT operation for address 0x001b in Fig. 3b is 4.
HALF-DELETE Fig. 4b, presents an example execution of
the HALF-DELETE operation. The HALF-DELETE operation
works by reducing each count value in the hashed positions
by half of the return value of the corresponding COUNT

operation.In Fig. 4b, the return value of COUNT{0x012f} will
be three. Then, HALF-DELETE{0x012f} will reduce each value
in the hashed positions by one, which is half of the return
value of COUNT{0x012f}. The reason why the HALF-DELETE

operation reduces the counts by only the half is to diminish
the impact of reduction because each count value accounts

ex) INSERT { 0x001b }

3 0 5 5 0 3 0 0 1 0 1

0x012f 0xf3230x001b

4 0 6 6 0 3 0 0 1 0 1

0x012f 0xf3230x001b

(a) INSERT operation

4 0 6 6 0 3 0 0 1 0 1

0x012f 0xf3230x001b

ex) COUNT { 0x001b }= Min(values of hashed positions)= 4

(b) COUNT operation

Fig. 3: Example of HammerFilter’s two operations (INSERT, COUNT)
(3 hash functions, 11 arrays)

4 0 6 6 0 3 0 0 1 0 1

0x012f 0xf3230x001b

4 0 3 3 0 0 0 0 1 0 1

0x012f 0xf3230x001b

ex) DELETE { 0x012f }:
Subtracts each value with

COUNT{ 0x012f } = 3

COUNT{0x001b} = 3 (Additional refresh probability drop)
COUNT{0xf323} = 0 (Additional refresh probability drop)

COUNT{0x001b} = 4
COUNT{0xf323} = 1

Hash-induced
collision

(a) DELETE operation

ex) HALF-DELETE { 0x012f }:
Subtracts each value with

half of COUNT{ 0x012f } (3/2=1)

4 0 6 6 0 3 0 0 1 0 1

0x012f 0xf3230x001b

4 0 5 5 0 2 0 0 1 0 1

0x012f 0xf3230x001b

(b) HALF-DELETE operation

Fig. 4: Reason for the necessity of HALF-DELETE operation
(3 hash functions, 11 arrays)

HammerFilterAccessed
address

INSERT with pi
COUNT every access

Refresh Logic
COUNT value

if(additional refresh)
HALF-DELETE Accessed address

Determine pr by COUNT value
Send additional refresh commands with pr

Fig. 5: Operation of HammerFilter and Refresh Logic

for accesses to different row addresses some of which hashed
positions coincide (referred to as hash-induced collision). For
example, if the operation subtracts each value in the hashed
positions by the count of 0x012f (COUNT {0x012f}=3), as
shown in Fig. 4a, the counts of the other addresses will
also decrease (e.g., COUNT{0x001b} decreases from four to
three, and COUNT{0xf323} decreases from one to zero). These
lowered count values may have a harmful effect on calculating
pr, unintentionally resulting in fewer additional refreshes for
victim rows. On the contrary, in the HALF-DELETE oper-
ation, the counters of the other rows can keep their actual
counts, as illustrated in Fig. 4b.

C. HammerFilter Design

Table II summarizes the parameters used in HammerFilter,
and Fig. 5 illustrates the overall operation of HammerFilter.
When a row address is accessed, the Count Table is updated
by the INSERT operation with a predetermined probability
pi. In our experiments, pi is set to 0.005, which is the
best-performing value derived from extensive evaluations.
Simultaneously, the Count Logic provides a threat degree
(COUNT{the address}) for the corresponding address to the
Refresh Logic. Then, the Refresh Logic will condition-
ally issue a refresh command to the victim rows with some
calculated probability pr. Obviously, the value of pr is pro-
portional to the count value from Count Logic. Specifically,
when the count value is large, it becomes more likely that a
refresh command will be issued with a larger pr. The pr value

TABLE II: Parameters for HammerFilter

Parameters Description Value
Rth RowHammer threshold 4K

pi
Probability of inserting into

the counter table at every access 0.005

pr
Probability of

sending additional refreshes
Calculated by the

equation 1

R Constant value
used to calculate pr

0.05

of
Hash function

Number of
hash functions in hash unit 7

Counter
table size Number of counter table entries 3961

is computed as follows:

{
pr = R÷ 28−count if count > 2

pr = 0 else
(1)

In this paper, the constant value R is empirically set to
0.05 based on the results of extensive experiments. In the
equation 1, Refresh Logic will not issue refresh commands
unless the count value is greater than two to avoid issuing
many unnecessary refresh commands. After the system sets
an appropriate pr for the accessed row, the refresh logic sends
additional refresh commands to the neighboring rows around
the accessed row with a probability pr. When certain victim
rows are refreshed by the refresh command from Refresh

Logic, Delete Logic performs HALF-DELETE on the cor-
responding aggressor row. This is because this row has no risk
of incurring RowHammer for a while.

To find the optimal trade-off between the hardware overhead
and false positive rate, we derived the parameters for Hammer-
Filter listed in Table II. Each entry consists of three bits to have
the maximum count value of seven because our exhaustive
simulations confirmed that the counter value would not exceed
seven. Therefore, the total area overhead of HammerFilter is
1.45 KB (3961×3bits) per bank, which is an acceptable area
cost in a memory controller [13], [14].

TABLE III: Evaluated system configuration

Processor 8 cores, 2 GHz, 8-wide issue, 8 MSHRs/core,
OoO 192 entry instruction window

Last-Level 4MB shared, 64B cache line,
Cache 8-way associative
Memory FR-FCFS, 64 entry request queueController
Main 32 Gb device, x8 DDR4-3200, 1 channel,
Memory 1 rank, 16 banks/rank, 64K rows/bank, 1 KB page

V. EVALUATION METHODOLOGY

In order to evaluate the proposed method, DRAMSim2 [16]
is modified to implement the proposed method and integrated
with gem5 [17]. Table III summarizes the system configura-
tions used for our performance evaluation. We referred to [18]
for the DRAM timing constraint parameters. The RH threshold
was set to be 4K, which is a smaller value than the recently
reported value of 10K [3], considering that the RowHammer
problem will worsen in the future. Our evaluation was con-
ducted considering both benign and malicious applications.
Comparisons were conducted in terms of two criteria. First,
the SPEC CPU 2006 [19] benchmark was used as the benign
applications without any intention of inducing RowHammer
attacks. 19 benchmarks from SPEC CPU 2006 were selected,
and they were executed with 500M instructions. The number
of additional refreshes in the benign applications was mea-
sured. Second, five synthetically crafted malicious workload
patterns were used to evaluate the protection capability for
RowHammer attacks.

Table IV presents brief descriptions of the malicious
RowHammer attack patterns inspired by the previously sug-
gested attack scenarios [3], [7], [15]. There are five pattern
types: Type 1 simply accesses the selected rows repeatedly;
Type 2 repeatedly accesses a set of selected rows, but some
random rows are accessed in the middle; Type 3 repeatedly
accesses the adjacent rows around selected victim rows to
model an attack pattern called Double-sided RowHammer
attack [3], [7], [15]; Type 4 is a mix of Double-sided
RowHammer attack and randomly accessed rows; Type 5 is
a combination of type 1 and type 3 attacks. To cover more
intricate and various attack patterns, each pattern is generated
while increasing the number of aggressor rows from 2 to
320 (e.g., 2, 20, . . . , 320). The malicious applications were
designed to attack as compactly as possible on one bank
within 64 ms (retention time of a DRAM cell). The amount
of RowHammer reduction was measured to determine the
protection capability with respect to malicious attacks. The
RH reduction ratio is calculated by dividing the number of bit
flips in a DDR4 device when a certain protection scheme is
applied by the number when no protection scheme is applied.
To compare the performance and energy overheads of each
method, the number of additional refreshes was measured. Fi-
nally, we analyzed the storage used to implement the schemes
to estimate area overheads.

TABLE IV: Malicious patterns

Type Description Access Pattern
1 Repeated selected rows (a1, a2, · · ·, aN)∗

2 Repeated selected rows + a1, 1315, a2, 798
random rows , · · ·, aN , 37, · · ·

3 Double-sided RowHammer attack (a1 − 1, a1 + 1, · · ·
, aN − 1, aN + 1)∗

4 Double-sided RowHammer attack + a1 − 1, 927, a1 + 1,
random rows · · ·, 109, aN + 1, · · ·

5 Double-sided RowHammer attack + (a1 − 1, b1, a1 + 1
repeated selected rows , · · ·, bN , aN + 1)∗

VI. EXPERIMENTAL RESULTS

This section evaluates the feasibility of the proposed method
compared with existing probabilistic methods and counter-
based methods based on three parameters: RH reduction ratio,
number of additional refreshes, and area overhead. The con-
figurations of each compared method are defined as follows:

• PARA-0.001 denotes the PARA method [5] with a fixed
probability 0.001 to perform additional refreshes.

• The parameters of MRLoc (e.g., the circular queue size
and the parameters used to calculate the probability of
additional refreshes) and those of PRoHIT (e.g., the
history table size and the parameters related to the table
management policy) are set according to [6] and [7],
respectively.

• The area overhead of TWiCe and Graphene are deter-
mined based on an optimization method and adjustable
reset window method (set reset window parameter k to
two) described in [8] and [10], respectively .

• HammerFilter’s parameters are listed in Table II.

Analysis of Malicious Applications Fig. 7 presents the
comparison results for each probabilistic method, including the
proposed method, with respect to malicious applications. The
RH reduction ratios shown in Fig. 7 are the average values for
all the patterns listed in Table IV. MRLoc [6] and PARA [5]
cannot mitigate RowHammer effectively, as mentioned in
Section III-B. The results in MRLoc reveal similar tendencies
to PARA because the maximum probability of performing an
additional refresh is calculated as 0.00125, which is similar
to the probability of PARA-0.001. The average RH reductions
are 68% and 62%, respectively. In Fig. 7, PRoHIT [7] blocks
RowHammer attacks at a high rate for aggressor rows between
2 to 60 because its table size can cover these aggressor rows
to some extent, but it cannot cover more than 80, where its
average RH reduction is only 37%. Furthermore, PRoHIT
cannot sufficiently prevent RowHammer attacks even when
attacked by 2 to 60 aggressor rows, meaning it cannot operate
effectively when attack patterns become complicated. It has
been stated that PRoHIT is still vulnerable to some specific
patterns [10]. HammerFilter achieves overwhelmingly superior
results in terms of mitigating RowHammer attacks for all
numbers of aggressor rows. It protects against all RowHammer
attacks, while the previous probabilistic solutions only mitigate
them by less than 56% on average.

0.9

1

1.1

1.2

1.3

Re
la

tiv
e

of

 A
dd

iti
on

al
 R

ef
re

sh
es

PARA-0.001 MRLoc TWiCe Graphene PRoHIT CBT-4096 HammerFilter (Ours)

Fig. 6: Additional refresh in general applications

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

R
H

 R
ed

u
ct

io
n

 R
at

io

Aggressor Rows #

PARA-0.001 MRLoC PRoHIT HammerFilter (Ours)

Fig. 7: Average RH reduction of all patterns (1. . . 5)

Analysis of Benign Applications A large number of ad-
ditional refreshes may cause performance degradation and
additional energy dissipation. Therefore, the number of ad-
ditional refreshes was measured while running SPEC CPU
2006. Fig. 6 shows the numbers of additional refreshes in
the benign applications. The numbers are normalized with the
number of basic refreshes (i.e., auto-refresh). As described in
Section III-B, CBT performs significant additional refreshes
(14.8% of basic refreshes on average) in benign applications
because it sends additional refresh commands to a group
of rows, causing a large number of unnecessary refreshes.
PRoHIT also carries out a large number of additional refreshes
(7.8% of basic refreshes on average). This is because once a
candidate aggressor row enters the Hot table, there is no
eviction policy for that row, thus PRoHIT continuously sends
additional refresh commands to the row with a high proba-
bility. PARA and MRLoc simply perform additional refreshes
with a low probability, so the number of additional refreshes
of them is also low. However, they cannot block RowHammer
effectively as shown in Fig. 7. TWiCe performs additional
refreshes the most efficiently (0.1% of basic refreshes on av-
erage) using its table. However, the table requires a significant
area overhead to implement the TWiCe module. Graphene
performs a small number of additional refreshes (0.5% of

942.8

64
53.8

23.2

TWiCe CBT Graphene Hammerfilter

A
re

a
C

o
st

 p
e

r
R

an
k

(K
B

)

Fig. 8: Area cost of Hammerfilter vs. counter-based solutions

basic refreshes on average), but it also incurs a large area
overhead compared to recent hardware implementations [13],
[14]. HammerFilter performs a small number of additional
refreshes (1.5% of basic refreshes on average), which has little
effect on system performance. Additionally, HammerFilter
even shows considerable RH reduction, as shown in Fig. 7,
as well as a low area overhead.
Area Overhead Analysis Fig. 8 presents a comparison of
the area overheads of prior methods and our method. TWice
requires approximately 942.8 KB of storage per rank (521.3
KB for SRAM and 421.7 KB for CAM). Additionally, TWiCe
has to perform the floating operation when the RH threshold
is lower than 32K as described in Section III-B. CBT requires
64 KB of SRAM storage per rank on a ten split level basis.
Graphene requires approximately 53.74KB of CAM storage
per rank when it uses the adjustable reset window method.
HammerFilter requires only 23.2 KB of SRAM storage per
rank, which is 40.6× better than TWiCe and 2.3× better than
Graphene. This area overhead of HammerFilter is feasible
for the recent hardware implementations of the memory con-
trollers [13], [14]. Other probabilistic methods (i.e., PARA,
PRoHIT, MRLoc) have significantly efficient area overhead
because they do not require much storage for metadata.

However, they cannot prevent intricate RowHammer attack
patterns, as described in Section III-B.

VII. CONCLUSION

Continuous scaling-down of the DRAM manufacturing
process has introduced some reliability concerns, such as
RowHammer. Several methods have been introduced to ad-
dress this issue, but most approaches either incur exces-
sive area overhead or provide limited prevention capabilities
against maliciously crafted attack patterns. This paper pro-
poses a novel RowHammer mitigation method called Ham-
merFilter based on observations of vulnerabilities in prior
works. HammerFilter utilizes a space-efficient probabilistic
data structure, counting bloom filter (CBF), to track all
aggressor rows efficiently. Our evaluation demonstrates that
HammerFilter prevents all RowHammer attacks, whereas well-
known probabilistic methods prevent the attacks by only 56%.
In terms of the implementation cost, the total area overhead
of HammerFilter is only 1.45 KB per bank, which is 40.6×
less than that of TwiCe and 2.3× less than that of Graphene.

ACKNOWLEDGEMENT

We thank the anonymous reviewers of DAC 2021 and ICCD
2021 for their feedback. This work was supported by Samsung
Electronics Co., Ltd.

REFERENCES

[1] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, 2015.

[2] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote
software-induced fault attack in javascript,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2016, pp. 300–321.

[3] J. S. Kim, M. Patel, A. G. Yaglikci, H. Hassan, R. Azizi, L. Orosa,
and O. Mutlu, “Revisiting rowhammer: An experimental analysis
of modern dram devices and mitigation techniques,” arXiv preprint
arXiv:2005.13121, 2020.

[4] JEDEC, “DDR4 SDRAM standard,” 2012.
[5] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,

K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA). IEEE,
2014, pp. 361–372.

[6] J. M. You and J.-S. Yang, “Mrloc: Mitigating row-hammering based on
memory locality,” in Proceedings of the 56th Annual Design Automation
Conference 2019. ACM, 2019, p. 19.

[7] M. Son, H. Park, J. Ahn, and S. Yoo, “Making dram stronger against
row hammering,” in 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2017, pp. 1–6.

[8] E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “Twice: preventing
row-hammering by exploiting time window counters,” in Proceedings
of the 46th International Symposium on Computer Architecture. ACM,
2019, pp. 385–396.

[9] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Mitigating wordline
crosstalk using adaptive trees of counters,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2018, pp. 612–623.

[10] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. Ho Ahn, and J. W. Lee,
“Graphene: Strong yet lightweight row hammer protection,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 1–13.

[11] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “A general-purpose
counting filter: Making every bit count,” in Proceedings of the 2017
ACM International Conference on Management of Data. ACM, 2017,
pp. 775–787.

[12] J. Misra and D. Gries, “Finding repeated elements,” Science of computer
programming, vol. 2, no. 2, pp. 143–152, 1982.

[13] H. Hassan, M. Patel, J. S. Kim, A. G. Yaglikci, N. Vijaykumar, N. M.
Ghiasi, S. Ghose, and O. Mutlu, “Crow: A low-cost substrate for improv-
ing dram performance, energy efficiency, and reliability,” in Proceedings
of the 46th International Symposium on Computer Architecture, 2019,
pp. 129–142.

[14] Y. Wang, L. Orosa, X. Peng, Y. Guo, S. Ghose, M. Patel, J. S. Kim, J. G.
Luna, M. Sadrosadati, N. M. Ghiasi et al., “Figaro: Improving system
performance via fine-grained in-dram data relocation and caching,” in
2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2020, pp. 313–328.

[15] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuf-
frida, H. Bos, and K. Razavi, “Trrespass: Exploiting the many sides of
target row refresh,” arXiv preprint arXiv:2004.01807, 2020.

[16] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” IEEE computer architecture letters,
vol. 10, no. 1, pp. 16–19, 2011.

[17] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[18] Micron Technology, “8Gb: x4, x8, x16 DDR4 SDRAM,” 2017.
[19] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH

Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

